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1. Introduction

Economists have been concerned with the theoretical and empirical measure-
ment of productive efficiency for at least fifty years, viz., the seminal work of
Koopmans (1951), Debreu (1951) and Farrell (1957). The microeconomic theo-
retical foundations for such measurement is relatively well established (Färe et al.
(1985), Färe et al. (2008)). However, the specification of flexible statistical models
and accompanying estimators of production frontiers that permit robust empirical
investigations of efficiency is the object of a much more recent and developing
literature in Econometrics and Statistics.1

From an econometric perspective, the main objective in this literature can be
stated simply. Let Ψ = {(x, y) ∈ <p+1

+ : x can produce y} be a technology where
x ∈ <p+ is a vector of inputs used to produce an output y ∈ <+. The produc-
tion frontier associated with Ψ is defined as ρ(x) = sup{y ∈ <+ : (x, y) ∈ Ψ}
for all x ∈ <p+. Given a sample of n realized production plans (or production
units) χn = {(Xi, Yi)}ni=1, which share the technology Ψ, the principal goal of this
literature is to estimate ρ(x) for any x ∈ <p+. For an arbitrary production plan

(Xi, Yi) ∈ Ψ, we define its (inverse) Farrell efficiency as 0 ≤ Ri = Yi
ρ(Xi)

≤ 1. Once

an estimate of ρ is available, estimated efficiencies can be readily obtained. Es-
timated efficiencies can then be used to construct relative and absolute efficiency
rankings for the observed production plans or units. It is hard to overstate the
empirical relevance of constructing efficiency rankings. They are used by man-
agers to allocate resources within organizations and consequently establish the
natural boundaries of a firm or by policy makers to determine the most efficient
allocation of public resources in education, health care, pollution abatement, etc.
Fried (2008) provides a comprehensive survey of the empirical/applied use of such
rankings.

There exists two main statistical approaches for modeling production frontiers.
The deterministic approach is based on the assumption that all observed data lie
in Ψ, i.e., P ((Xi, Yi) ∈ Ψ) = 1 for all i, where P is a probability measure. In
these models, any deviation of realized output Yi from ρ(Xi) is attributable to
unobserved inefficiencies of the production plan i. The stochastic approach allows
for random shocks to the production process. As a result, observed output Yi at
any input level can be smaller or larger than ρ(Xi). As a result, it may be that
P ((Xi, Yi) /∈ Ψ) > 0 for some i. Although more appealing from an econometric
perspective, separating inefficiency and random shock in stochastic frontier models
requires strong parametric assumptions on the joint density of (Xi, Yi) (Aigner
et al. (1977), Fan et al. (1996), Kumbhakar et al. (2007), Martins-Filho and Yao
(2014)). In contrast, deterministic frontier models can be estimated under much
milder restrictions on the stochastic process generating χn.

Estimation and inference for deterministic frontier models has been largely

1See Simar and Wilson (2008) for a recent comprehensive review of the latest developments.
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conducted using DEA (data envelopment analysis) and FDH (free disposal hull)
estimators (Charnes et al. (1978), Deprins et al. (1984)). Although the asymptotic
properties of DEA (Kneip et al. (2008)) and FDH (Park et al. (2000)) are now
well known, these estimators are not robust to extreme values, are inherently
biased downward and generate estimated frontiers that are either non-smooth or
discontinuous. To remedy these problems a number of alternative nonparametric
frontier specification and estimation procedures have been proposed (Aragon et al.
(2005), Martins-Filho and Yao (2007, 2008), Daouia and Simar (2007), Daouia
et al. (2009, 2010, 2012)). In this paper we add to this literature by considering a
novel estimator for the multiplicative nonparametric frontier model first proposed
in Martins-Filho and Yao (2007). We assume that output Yi is generated by

Yi =
σ(Xi)

σR
Ri for i = 1, 2, · · · , n (1)

where Ri is an unobserved random variable representing efficiency and taking
values in the interval [0, 1], Xi is an observed random vector representing inputs
taking values in <p+, σ(x) : <p+ → (0,∞) is a measurable function, σR is an

unknown parameter and the production frontier is given by ρ(x) ≡ σ(x)
σR

. In
this model Ri has the effect of contracting output from optimal levels that lie
on the production frontier. The larger Ri the more efficient the production unit
because the closer the realized output is to that on the production frontier. We
assume that E(Ri|Xi = x) ≡ µR where 0 < µR < 1 and V (Ri|Xi = x) ≡ σ2

R.
Here, the parameter µR is interpreted as a mean efficiency given input usage and
the common technology Ψ, whereas σR is a scale parameter for the conditional
distribution of Ri that also locates the production frontier. Its shape is captured
by σ(x). These conditional moment restrictions together with equation (1) imply
that E(Yi|Xi = x) = µR

σR
σ(x) and V (Yi|Xi = x) = σ2(x). The model can therefore

be rewritten as,

Yi = bσ(Xi) + σ(Xi)
(Ri − µR)

σR
= m(Xi) + σ(Xi)εi (2)

where b = µR
σR

, εi = Ri−µR
σR

, m(Xi) = bσ(Xi), E(εi|Xi = x) = 0 and V (εi|Xi =

x) = 1.2

Given the location-scale nature of (2), we follow Fan and Yao (1998) and pro-
pose an estimation procedure that consists of three stages: first, m(x) is estimated
using the local linear estimator of Fan (1992); second, squared residual from the
first stage are used in a local exponential procedure to estimate the conditional
variance σ2(x) as in Ziegelmann (2002); third, the estimated conditional variance
from stage 2 is used to estimate σR based on an anchoring assumption to be

2For simplicity, we will henceforth write E(·|Xi = x) or V (·|Xi = x) simply as E(·|Xi) or
V (·|Xi).
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discussed in Section 2. The estimator is fairly easy to implement as it involves
standard nonparametric procedures. In addition, the frontier estimator has a num-
ber of desirable characteristics: first, contrary to the frontier estimators in Aragon
et al. (2005), Daouia et al. (2009) and Martins-Filho and Yao (2008), it is a smooth
function of input; second, although the frontier estimator envelops the data, it is
not intrinsically biased as the popular DEA (data envelopment analysis) and FDH
(free disposal hull) estimators, therefore no bias correction is needed; third, the
estimator is fairly robust to outliers and extreme values. In addition, our estima-
tion procedure leads to a frontier estimator that is consistent and asymptotically
normal when suitably centered and normalized. Lastly, our estimation procedure
improves on the estimator developed in Martins-Filho and Yao (2007) in that our
procedure assures that the estimated conditional variance function (and estimated
frontier) is always positive. Potential negativity of the estimated variance may be
a major impediment in empirical studies that use Martins-Filho and Yao (2007).
Our proposed estimator is also shown to have desirable small sample properties as
revealed by a Monte Carlo study which provides both evidence on the estimator’s
finite sample behavior and its performance relative to the estimator proposed in
Martins-Filho and Yao (2007).

Besides this introduction, our paper has five more sections. Section 2 presents
the deterministic frontier model under consideration, lists the assumptions on
the data generating process and gives a detailed description of the estimator.
Section 3 provides the main theorems which characterize the asymptotic behavior
of the estimator. Section 4 contains a Monte Carlo simulation and in Section
5 we apply our methodology to construct an efficiency ranking for branches of
financial institutions in the United States. Finally, Section 6 provides a summary
and conclusions.

2. Statistical Model and Estimation Procedure

In this section we provide a full specification of the statistical model under
consideration and give a detailed description of the estimation procedure. We start
by listing a set of assumptions that are sufficient to establish the main asymptotic
results in Section 3.
Assumption A1. 1. Zi = (Xi, Ri)

′ for i = 1, 2, · · · , n is an independent and
identically distributed sequence of random vectors with density g. We denote by
gX(x) and gR(r) the common marginal densities of Xi and Ri respectively, and
by gR|X(r;X) the common conditional density of Ri given Xi. 2. 0 < BgX ≤
gX(x) ≤ B̄gX <∞ for all x ∈ G, G a compact subset of SX = ×pt=1(0,∞), which
denotes the Cartesian product of the intervals (0,∞).
Assumption A2. 1. Yi = σ(Xi)

Ri
σR

. 2. Ri ∈ [0, 1], Xi ∈ SX . 3. E(Ri|Xi) = µR,

V (Ri|Xi) = σ2
R. 4. σ2(x) = exp(f(x)) where f(x) is everywhere differentiable

with derivatives of order d = 1, 2 denoted by f (d)(x). 5. σ(x) ≤ B̄σ < ∞ for
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all x ∈ SX . 6. We denote the first and second derivatives of σ2(·) : SX → < by
σ2(1)(x) and σ2(2)(x) and assume that |σ2(2)(x)| < B̄2σ for all x ∈ SX .

Assumptions A1 and A2 imply that {(Yi, Xi)}ni=1 is an iid sequence of ran-
dom vectors, which is a typical assumption in the deterministic frontier literature.
Contrary to Park et al. (2000) and Kneip et al. (2008) we do not need to assume
that the joint density of (Yi, Xi) is positive at the frontier, which can be too re-
strictive in some settings. In contrast, for asymptotic normality we require, as
in Martins-Filho and Yao (2007), that max1≤i≤nRi approaches 1 at a suitable
rate when n→∞ (see Theorem 3 below). Assumption A2.4 assures that for any
unknown and arbitrary f(x), we have σ(x) > 0.

The following assumption is standard in nonparametric estimation and involves
only the kernel K. We observe that A3 is satisfied by commonly used kernels such
as the Epanechnikov, Biweight and others. Assumption A4 is a Lipschitz condition
on the marginal density of X which can be relaxed (Mynbaev and Martins-Filho
(2010)) at the expense of greater mathematical complexity.
Assumption A3. K(x) : ×pi=1[−1, 1] → < is a symmetric density function
with bounded support satisfying: 1.

∫
xiK(x)dx = 0 for i = 1, · · · , p. 2.∫

xixjK(x)dx = σ2
K for i = j, and 0 for i 6= j and i, j = 1, · · · , p. 3. for all

x ∈ <p, |K(x)| < BK <∞. 4. for all x, x′ ∈ <p, |K(x)−K(x′)| < m||x− x′|| for
some 0 < m <∞, where || · || is the Euclidean norm.
Assumption A4. For all x, x′ ∈ Θ, |gX(x) − gX(x′)| < mg||x − x′|| for some
0 < mg <∞.

We propose the following three stage estimation procedure. First, for any
x ∈ <p+ we obtain m̂(x;hn) ≡ α̂ where

(α̂, β̂) = argminα,β

n∑
i=1

(Yi − α− β(Xi − x))2K

(
Xi − x
hn

)
.

The bandwidth hn satisfies 0 < hn → 0 as n→∞. This is the local linear kernel
estimator of Stone (1977) and Fan (1992) with regressand Yi and regressors Xi. In
the second stage, we follow Ziegelmann (2002) by defining ei ≡ (Yi − m̂(Xi;hn))2

and obtain σ̂2
e(x;hn) ≡ exp(θ̂1), where

(θ̂1, θ̂2) = argminθ1,θ2

n∑
i=1

(ei − exp(θ1 + θ2(Xi − x)))2K

(
Xi − x
hn

)
.

This provides an estimator σ̂(x;hn) =
(
σ̂2
e(x;hn)

)1/2
. In the third stage, an

estimator for σR is obtained by defining

sR(hn) =

(
max

1≤i≤n

Yi
σ̂(Xi;hn)

)−1

.

As observed in Martins-Filho and Yao (2007) the estimation of σR by sR is justified
by assuming that there exists one observed production unit whose production plan
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lies on the estimated frontier. This is the anchoring assumption we referred to in
the introduction. As a consequence the forecasted value for Ri associated with
this unit is identically one. We emphasize that the estimator sR depends on the
bandwidth hn through σ̂(Xi;hn). Furthermore, in what follows it is desirable to
distinguish the bandwidth used in the first two stages of estimation, which we will
denote by hn, from that used in defining sR, which we will denote by gn, where
0 < gn → 0 as n→∞. Therefore, we represent the production frontier estimator

at x ∈ <p by ρ̂(x;hn, gn) = σ̂(x;hn)
sR(gn) . Note that by construction, provided that the

chosen kernel K is smooth, ρ̂(x;hn, gn) is a smooth estimator that envelops the
data (no observed pair (Yi, Xi) lies above (ρ̂(Xi;hn, gn), Xi)) but may lie above
or below the true frontier ρ(Xi), therefore avoiding the inherent bias of DEA and
FDH estimators.

3. Asymptotic Characterization of the Estimator

Due to the similarity between our proposed estimation strategy and that pro-
posed in Martins-Filho and Yao (2007), most of our focus will be on establishing
the asymptotic properties of the second stage estimator under exponential smooth-
ing. For simplicity, but without loss of generality, all of our results are for the case
where p = 1. For the case where p > 1, all results hold with appropriate adjust-
ments on the relative speed of n, hpn and gpn. The proofs for all results are provided
in Appendix 2.

We start by noting that σ2(1)(x) = exp(f(x))f (1)(x) and therefore a local linear
approximation for σ2(Xi) is given by L(Xi − x, θ(x)) = exp(θ1(x) + θ2(x)(Xi −
x)), where θ(x) = (f(x), f (1)(x))′ = (θ1(x), θ2(x))′. It is easily verifiable that
L(0, θ(x)) = exp(θ1(x)), L(1)(0, θ(x)) = exp(θ1(x))θ2(x) and L(2)(Xi − x, θ(x)) =
θ2(x)2 exp(θ1(x) + θ2(x)(Xi − x)). When necessary we will denote by θ0(x) =
(θ0

1(x), θ0
2(x)) the true values of f(x) and f (1)(x). Since we have defined ei =

(Yi − m̂(Xi;hn))2 we write the second stage estimator as

(θ̂1(x), θ̂2(x)) ≡ argmin
θ1,θ2

1

n

n∑
i=1

(ei − L(Xi − x, θ))2 1

hn
K

(
Xi − x
hn

)
.

Furthermore,

(θ̂1(x), θ̂2(x)) = argmin
θ1,θ2

1

n

n∑
i=1

(
ei − exp(θ1)

− θ2 exp(θ1)(Xi − x)− 1

2
L(2)(λi(Xi − x), θ)(Xi − x)2

)2

× 1

hn
K

(
Xi − x
hn

)
176 Brazilian Review of Econometrics 33(2) November 2013
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where λi ∈ [0, 1]. Now, suppose θ̂1(x), and θ̂2(x) are uniformly consistent es-
timators of θ0

1(x) and θ0
2(x) in a compact set G and put ε̂i = 1

2L
(2)(λi(Xi −

x), θ̂(x))(Xi − x)2. We will first provide the asymptotic properties of the estima-
tor γ∗1 (x) defined by

(γ∗1 (x;hn), γ∗2(x;hn)) ≡ argmin
γ1,γ2

1

n

n∑
i=1

(ei − ε̂i − γ1 − γ2(Xi − x))2 1

hn
K

(
Xi − x
hn

)
,

(3)
where γ1 = exp(θ1) and γ2 = θ2 exp(θ1). To this end we first obtain the following
auxiliary lemma.

Lemma 3.1 Assume A1-A4. If hn → 0,
nh3

n

ln(n) → ∞, then for every x ∈ G a

compact subset of (0,∞)× [0, 1] we have

γ∗1 (x;hn) − σ2(x)− 1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
ei − ε̂i − σ2(x)− σ2(1)(x)(Xi − x)

)
= Op(Rn,1(x))

uniformly in G, with

Rn,1(x) =
1

n

{∣∣∣∣ n∑
i=1

K

(
Xi − x
hn

)(
ei − ε̂i − σ2(x)− σ2(1)(x)(Xi − x)

) ∣∣∣∣
+

∣∣∣∣ n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)(
ei − ε̂i − σ2(x)− σ2(1)(x)(Xi − x)

) ∣∣∣∣}.
Lemma 1 reveals that to ascertain the uniform order in probability of

γ∗1(x;hn)−σ2(x)− 1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
(ei− ε̂i−σ2(x)−σ2(1)(x)(Xi−x))

in a compact set G, it suffices to investigate the order of the absolute value of the
terms

c1(x) =
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
(ei − ε̂i − σ2(x)− σ2(1)(x)(Xi − x))
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and

c2(x) =
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)
(ei− ε̂i−σ2(x)−σ2(1)(x)(Xi−x)).

However, given assumption A3 of compact support for the kernel K, it suffices to
investigate the order of |c1(x)|.3 In Theorem 1 we provide the exact order of

γ∗1(x;hn)−σ2(x)− 1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
(ei− ε̂i−σ2(x)−σ2(1)(x)(Xi−x))

and establish that under suitable normalization and centering γ∗1 (x;hn) is asymp-
totically normally distributed.

Theorem 3.2 Suppose that assumptions A1-A4 hold. In addition assume that
E(|εi||Xi) = µ1(Xi) is a uniformly bounded function of Xi ∈ G, a compact subset

of (0,∞). If hn → 0,
nh3

n

ln(n) →∞, then for every x ∈ G:

a) sup
x∈G
|γ∗1 (x;hn)− σ2(x)− 1

nhngX(x)

∑n
i=1K

(
Xi−x
hn

)
(ei − ε̂i − σ2(x)− σ2(1)(x)

(Xi − x))| = Op(h
3
n) +Op((

hn ln(n)
n )1/2),

b) If, in addition, we assume that E(ε4i |Xi = x) = µ4(x) is continuous in (0,∞),
h2
n ln(n)→ 0 and nh5

n = O(1) then for every x ∈ G

√
nhn(γ∗1 (x)− σ2(x)−B1n)

d−→ N

(
0,
σ4(x)

gX(x)
(µ4(x)− 1)

∫
K2(y)dy

)
,

where B1n =
h2
nσ

2
K

2 (σ2(2)(x)− L(2)(0, θ0(x))) + op(h
2
n) with θ0(x) = (f(x),

f (1)(x)) uniquely defined by σ2(i)(x) = L(i)(0, θ0), i = 0, 1.

It is a direct consequence of Theorem 1 and the equality

√
nhn

(√
γ∗1 (x)− σ(x)− 1

2σ(x)
B1n(x) +

(
1

2σ(x)
− 1

2σb(x)

)
B1n(x)

)
=

1

2
√
σ2
b (x)

√
nhn(γ∗1 − σ2(x)−B1n)

√
nhn

(√
γ∗1(x)− σ(x)−B2n

)
d−→ N

(
0,

σ2(x)

4gX(x)
(µ4(x)− 1)

∫
K2(y)dy

)
,

3It should be emphasized that kernels with non-compact support could also be accommo-
dated, provided that their rate of tail decay is sufficiently fast, but this would involve much
longer proofs.
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where B2n =
h2
nσ

2
K

4σ(x) (σ2(2)(x)− L(2)(0, θ0)) + op(h
2
n).

Theorem 1 relies on the uniform consistency of θ̂(x) as an estimator of θ0(x) in
the compact set G. The next theorem establishes the desired uniform consistency
of θ̂(x).

Theorem 3.3 Assume that A1-A4 hold and that for all x fixed in a compact subset
G of (0,∞) we have that (θ̂1(x), θ̂2(x)) satisfy the following estimating equations 1

nhn

∑n
i=1(ei − L(Xi − x, θ̂(x)))L(Xi − x, θ̂(x))K

(
Xi−x
hn

)
1
nhn

∑n
i=1(ei − L(Xi − x, θ̂(x)))L(Xi − x, θ̂(x))(Xi − x)K

(
Xi−x
hn

)  = 0.

Furthermore, assume that for any fixed x, θ0(x) is in the interior of a compact

set Θ̄ ⊂ <2. Then, θ̂(x)− θ0(x) = op(1) uniformly on a compact set G of (0,∞),

where θ̂(x) = (θ̂1(x), θ̂2(x))′.

It is a direct consequence of Theorem 2 and the second part of the proof of
Theorem 1 in Hall et al. (1999) that exp(θ̂1(x))− γ∗1(x) = op(h

2
n). Combined with

Theorem 1 we have,

√
nhn

(√
exp(θ̂1(x))− σ(x)−B2n

)
d−→ N

(
0,

σ2(x)

4gX(x)
(µ4(x)− 1)

∫
K2(y)dy

)
,

where B2n =
h2
nσ

2
K

4σ(x) (σ2(2)(x)−L(2)(0, θ0))+op(h
2
n). The results in Theorems 1 and

2 refer to the estimator σ̂(x;hn) =

√
exp(θ̂1(x)), but since our main interest lies

on ρ̂(x;hn, gn) ≡ σ̂(x;hn)
sR(gn) , a complete characterization of the asymptotic behavior

of the frontier estimator requires a characterization of the asymptotic behavior of
sR(gn), and how it combines with the results obtained from Theorem 1 for σ̂(x;hn).
The following Theorem 3 is presented without proof, as it can be obtained directly
from Martins-Filho and Yao (2007) in combination with Theorems 1 and 2 given
above. Part a) of Theorem 3 is a general result regarding the order in probability
of sR(gn)−σR. It states that if the estimator σ̂(x; gn) used to obtain sR is Op(Ln),
where Ln is an arbitrary nonstochastic sequence such that 0 < Ln → 0 as n→∞,
and if 1−max1≤t≤nRt = Op(Ln), then sR(gn)−σR = Op(Ln). The result is useful

in that from part a) of Theorem 1, if
ng5n
ln(n) → ∞, then σ̂(x; gn)− σ(x) = Op(g

2
n).

Hence, together with the assumption that 1 −max1≤i≤nRi = Op(g
2
n) we obtain

sR(gn) − σR = Op(g
2
n). It should be noted that the required boundedness in

probability of 1 − max1≤i≤nRi is not necessary to establish the consistency of
sR(gn), which results directly from part a) of Theorem 1. Its use is confined to
part b) of Theorem 3, where we use the result on the order of sR(gn) to obtain
the asymptotic normality of ρ̂(x;hn, gn) under a suitable normalization.
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Theorem 3.4 Let Ln be a nonstochastic sequence such that 0 < Ln → 0 as
n → ∞ and suppose that (1) σ̂(x; gn) − σ(x) = Op(Ln) uniformly in G, and (2)
1−max1≤i≤nRi = Op(Ln). Then,
a) sR(gn)− σR = Op(Ln),

b) Under the assumptions in Theorem 1 part b), if
ng5n
ln(n) → ∞, nh5

n = o(1), and

nhng
4
n = O(1) then

√
nhn

(
σ̂(x;hn)

sR(gn)
− σ(x)

σR
−B2n

)
d→ N

(
0,

σ2(x)

4σ2
RgX(x)

(µ4(x)− 1)

∫
K2(y)dy

)
where B2n = Op(g

2
n).

The conditions on the order of the bandwidths hn and gn are also crucial for
asymptotic normality of the estimated frontier. In particular, they imply that the
bandwidth hn, used in the first and second stages of the estimation, must satisfy
nh5

n = o(1), which represents an undersmoothing in the estimation σ̂(x, hn). In
addition, the bandwidth gn used to obtain sR in the third stage must converge
to zero slower than hn. The requirement ng5

n → ∞ in the estimation of sR is
necessary only in that it provides a convenient order for B2n.

A sharper result on the bias term B2n can be obtained by assuming that
1−max1≤i≤nRi = op(g

2
n). In this case part (b) of Theorem 2 can be extended to

give

√
nhn

(
σ̂(x;hn)

sR(gn)
− σ(x)

σR
−B3n

)
d→ N

(
0,

σ2(x)

4σ2
RgX(x)

(µ4(x)− 1)

∫
K2(y)dy

)

where B3n =
g2nσ(x)σ2

k

4σR
supx∈G,R∈[0,1]

(
[σ2(2)(x)−L(2)(0,θ0)]R

σ2(x)

)
+op(g

2
n). We note that

this increased precision in the expression of the bias is unnecessary for inference
purposes, since it is normally conducted under the assumption that nhng

4
n → 0,

in which case
√
nhnB3n → 0 as n → ∞. If we compare the preceding result to

that obtained from Theorem 2 in Martins-Filho and Yao, we can see that the
two estimators have exactly the same asymptotic variance (resulting in the same
efficiency) but a different bias. The difference is governed by the term L(2)(0, θ0).
As mentioned in Ziegelmann (2002), since L(2)(0, θ0) is a nonnegative quantity,
we conclude that the bias of the estimator we propose can be smaller than that of
the local linear estimator if σ2(2)(x) is nonnegative and greater than L(2)(0, θ0).

Our results show that a local exponential estimator can be incorporated into
the second stage estimation replacing the local linear estimator without loss of
consistency or asymptotic normality, previously established under the assumptions
of Martins-Filho and Yao (2007).
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4. Monte Carlo Study

In this section we investigate some of the finite sample properties of our esti-
mator, henceforth referred to as NPE, via a Monte Carlo study. For comparison
purposes, we also include in the study the local linear frontier estimator proposed
in Martins-Filho and Yao (2007), referred to as NP. We note that in Martins-Filho
and Yao (2007) an extensive Monte Carlo study was performed comparing their
estimator to the bias-corrected FDH estimator. They find that in most experi-
ments considered the NP estimator outperforms bias-corrected FDH in terms of
bias, MSE and the various efficiency criterion measures considered in their paper
and herein (see discussion below). Given the relative performance of NPE and NP
discussed below, we do not report results on the relative performance of the NPE
estimator and the bias corrected FDH.

Our simulations are based on model (1), i.e., Yi = σ(Xi)Ri
σR

, with p = 1. We
generate data with the following characteristics. The Xi are pseudorandom vari-
ables from a uniform distribution with support given by [al, bu]. Ri = exp(−Zi),
where Zi are pseudorandom variables from an exponential distribution with pa-
rameter β > 0, therefore Ri has support on (0, 1]. We consider three specifications
for σ(x):

σ1(x) =
√
x, with x ∈ [al, bu] = [10, 100];

σ2(x) = 3(x− 1.5)3 + 0.25x+ 1.125, with x ∈ [al, bu] = [1, 2] and

σ3(x) = x2 with x ∈ [al, bu] = [1, 2].

These functions are associated with concave, non-concave nor convex and con-
vex production frontiers, respectively. Two parameters for the exponential dis-
tribution are considered: β1 = 3 and β2 = 1/3. These choices of parameters
produce, respectively, the following values for the parameters of gR|X : (µR, σ

2
R) =

(0.25, 0.08) and (0.75, 0.04). Three sample sizes n = 200, 400, 600 were used.
An important aspect in the implementation of our frontier estimator is band-

width selection. We consider the following rule-of-thumb bandwidth.

ĥROT =


∫
K2(φ)dφ(µ̂4(λn)− 1)

∫
σ̇2(x)dx

(σ2
K)2

(
max1≤i≤n

(
(σ̇2(2)(xi)−β̇2eα̇)Ṙi

σ̇2(xi)

))2
1
n

∑n
i=1 σ̇

2(xi)


1/5

n−1/5

The sequence {σ̇2(Xi)}ni=1 is estimated with an ordinary least square quartic re-
gression of {ε̂2i }ni=1 on {Xi}ni=1, with ε̂i = Yi−m̂(Xi), where m̂(Xi) is estimated via
local linear regression with a rule-of-thumb bandwidth as in Ruppert et al. (1995).
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{σ̇2(Xi)}ni=1 is then used to construct
∫
σ̇2(x)dx, max1≤i≤n

(
(σ̇2(2)(xi)−β̇2eα̇)Ṙi

σ̇2(xi)

)
and 1

n

∑n
i=1 σ̇

2(xi). In particular β̇2eα̇ is estimated by (σ̇2(1)(x))2/σ̇2(x). µ̂4(λn) =

1
n

∑n
i=1

(
Yi

σ̂(Xi,λn) − b̂
)4

, where b̂ =
∑n
i=1 σ̂(Xi,λn)Yi∑n
i=1 σ̂(Xi,λn) is an estimator for b = µR/σR.

{σ̂2(Xi, λn)}ni=1 in µ̂4 is estimated via local linear regression of {ε̂2i }ni=1 on {Xi}ni=1,
with a rule-of-thumb bandwidth λn as in Ruppert et al. (1995) and Fan and Yao
(1998).

The results of our simulations are summarized in Figures 2-19 that appear in
Appendix 1. Whenever negative estimates for σ2(·) occur in the case of NP, the
sample is discarded. In this case, another sample is generated until 1000 valid
repetitions are obtained. Figures 2-19 give boxplots of MSE for the frontier func-
tion estimator ρ̂(·), shape function estimator σ̂(·), location parameter estimator
sR, and efficiency estimator R̂i. Each boxplot is constructed from 1000 points
(repetitions), where each point corresponds to a sample draw and is calculated as
the squared Euclidean distance between the estimate and true value of ρ(·), σ(·),
σR and Ri. The thick horizontal line inside the rectangle in each boxplot corre-
sponds to the median of the distribution, and the rectangle height corresponds
to interquartile range. Consequently 50% of data is represented by the rectangle.
The two thin horizontal lines below and above the rectangle are the whiskers. The
whiskers extend to the most extreme data point which is no more than 1.5 times
the interquartile range.
General regularities: As expected from the asymptotic results of Section 3, as
the sample size n increases, the boxplots show that MSE decreases for the totality
of simulations for all estimators and values for µR considered.

We now turn to the impact of different values of µR on the performance of
NPE and NP. Regarding sR, σ̂(x), the frontier estimator and the efficiency, the
best performance in terms of MSE occurs when µR = 0.25. The relative diminished
performance when µR = 0.75 is most likely explained by the fact that for this DGP
σ2
R is half of its value in other DGP, contributing to its higher variance as suggested

in Theorem 2.
Remark 1. It is worth noting that most of the frontier estimators available
in literature present better performance as the concentration of firms near to the
frontier increases. Since NP and NPE estimators are based on conditional variance,
their performance are disregard of that concentration. Therefore they may be
valuable alternatives to estimating production frontiers in situations such that the
majority of firms are not close to the frontier.
Relative performance of estimators: For β1 = 3 there are no great differences
between NP and NPE. Some exceptions occur when we use the DGP with σ1(x). In
this case, NP performs better than NPE with some exception regarding dispersion
of the MSE in frontier function estimator. See Figures 2-10. The main differences
in performance occur when we use β2 = 1/3. In this case, on estimating the
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production frontier (Figures 11-19) there seems to be evidence that NPE dominates
NP in terms of MSE in all cases considered.The gain of NPE seems to be on
estimating σR, since that NPE outperforms NP on estimating σR, while NP does
a slightly better job than NPE on estimating frontier shape function.
Remark 2. NP and NPE performances are quite similar in the most favorable
case for both of them, that is, with β1 = 3. Nevertheless, NPE performs better
in the hardest design. Therefore it seems to be a valuable tool in estimating the
frontier if compared with the NP estimator. Furthermore, in the next section we
shall see that preventing negative estimates for the variance may be important in
empirical work.

5. Empirical exercise – The Case of a Production Frontier for Bank
Branches in the United States

We illustrate the use of our methodology by analyzing United States (US) bank
data. The goal is to estimate a production frontier for bank branches in the US
territory using cross sectional data from 2009. The data source is the Federal
Deposit Insurance Corporation (FDIC) and all data are publicly available from
FDIC’s website (http://www2.fdic.gov/SDI/main.asp).

We only consider one input and one output. If multiple inputs are considered,
one can avoid slow convergence rates due to increased number of regressors (curse
of dimensionality) by reducing the number of conditioning variables via principal
components analysis, for instance. In order to measure branch output we use
net loans and leases (nll), whereas to measure branch inputs we consider total
deposits (td). We restrict our sample to branches working with total deposits
between US$ 10,000.00 and US$ 1,000,000.00 corresponding to net loans and leases
between US$ 10.00 and US$ 1,000,000.00. Moreover, we project the inputs into
the interval [0,1] to facilitate the bandwidth choice. For sake of comparison with
our proposed estimator, we include in our analysis both the FDH estimator and
the nonparametric linear estimator of Martins-Filho and Yao (2007).

Figure 1 shows the estimated frontiers for US territory and Table 1 presents
the efficiency rank for the 30 most efficient branches. The smoothness level for NP
is the highest we can get without obtaining negative scale estimates using a non
variable bandwidth. Therefore, the NP estimator fails in providing nonnegative
estimates for the conditional variance using larger bandwidths. Such a result ad-
vocates in favour of the NPE estimator, which possesses the natural nonnegativity
property.

Our analysis here amounts to descriptive comments of the empirical results and
should obviously be complemented by a more in depth knowledege of the banking
industry and state regulatory environment. Our goal was simply to illustrate the
use of our estimation method and how it can be useful in analyzing the efficiency
of a particular industry.
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6. Summary and Conclusions

In this paper we use the idea of local exponential smoothing to improve the non-
parametric frontier estimator proposed by Martins-Filho and Yao (2007). Their
estimation strategy suffered from the undesirable property of potentially generat-
ing negative estimated conditional variances. Local exponential smoothing pre-
vents this problem. In addition, there seems to be finite sample gains in adopting
exponential smoothing. These gains are particularly large in the estimation of the
location parameter in the frontier model. Our simulation results confirm and give
added support to those in Ziegelmann (2002). We also illustrate our approach via
an empirical data frontier analysis, offering the practitioner an applied viewpoint.
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Appendix 1: Tables and Graphics

Table 1
NPE Efficiency Rank - US Territory - inputs in [10, 000, 1, 000, 000]

Agency City State R̂
1 Wright Express Financial Services Corporation Salt Lake City UT 1.00
2 Glacier Bank Kalispell MT 0.98
3 Northern Bank & Trust Company Woburn MA 0.96
4 Access National Bank Reston VA 0.96
5 The Needham Bank Needham MA 0.93
6 Atlantic Capital Bank Atlanta GA 0.93
7 Parke Bank Sewell NJ 0.93
8 Quad City Bank and Trust Company Bettendorf IA 0.93
9 Two Rivers Bank & Trust Burlington IA 0.92

10 Community West Bank, National Association Goleta CA 0.92
11 Southern First Bank, National Association Greenville SC 0.92
12 Bank of Washington Washington MO 0.92
13 First Bank Richmond, National Association Richmond IN 0.91
14 Jefferson Bank and Trust Company Eureka MO 0.91
15 First Financial Bank El Dorado AR 0.90
16 The Park Bank Madison WI 0.90
17 The Foster Bank Chicago IL 0.90
18 Integrity Bank Camp Hill PA 0.90
19 Wainwright Bank & Trust Company Boston MA 0.89
20 Mountain West Bank Coeur D Alene ID 0.89
21 Monarch Bank Chesapeake VA 0.89
22 Horicon Bank Horicon WI 0.88
23 Metropolitan National Bank New York NY 0.88
24 Republic Bank Bountiful UT 0.88
25 Adams Bank & Trust Ogallala NE 0.87
26 Farmers & Merchants Bank Timberville VA 0.87
27 Centennial Bank Fountain Valley CA 0.87
28 Citizens National Bank of Texas Waxahachie TX 0.87
29 Kansas State Bank of Manhattan Manhattan KS 0.87
30 Medallion Bank Salt Lake City UT 0.86
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Figure 1
Frontier Estimation - US Territory - x ∈ [10, 000, 1, 000, 000]
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Figure 2
Frontier I - Boxplot of Estimators - n = 200 - µR = 0.25
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Figure 3
Frontier I - Boxplot of Estimators - n = 400 - µR = 0.25
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Figure 4
Frontier I - Boxplot of Estimators - n = 600 - µR = 0.25

NPE NP

0
5

10
15

Frontier Function

NPE NP

0.
0

0.
2

0.
4

0.
6

0.
8

Shape Function

NPE NP

0e
+

00
4e

−
04

8e
−

04

Scale Parameter

NPE NP

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Efficiency

Brazilian Review of Econometrics 33(2) November 2013 189



Carlos Martins-Filho, Hudson S. Torrent and Flavio A. Ziegelmann

Figure 5
Frontier II - Boxplot of Estimators - n = 200 - µR = 0.25
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Figure 6
Frontier II - Boxplot of Estimators - n = 400 - µR = 0.25
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Figure 7
Frontier II - Boxplot of Estimators - n = 600 - µR = 0.25
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Figure 8
Frontier III - Boxplot of Estimators - n = 200 - µR = 0.25
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Figure 9
Frontier III - Boxplot of Estimators - n = 400 - µR = 0.25
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Figure 10
Frontier III - Boxplot of Estimators - n = 600 - µR = 0.25
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Figure 11
Frontier I - Boxplot of Estimators - n = 200 - µR = 0.75
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Figure 12
Frontier I - Boxplot of Estimators - n = 400 - µR = 0.75
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Figure 13
Frontier I - Boxplot of Estimators - n = 600 - µR = 0.75
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Figure 14
Frontier II - Boxplot of Estimators - n = 200 - µR = 0.75
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Figure 15
Frontier II - Boxplot of Estimators - n = 400 - µR = 0.75
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Figure 16
Frontier II - Boxplot of Estimators - n = 600 - µR = 0.75
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Figure 17
Frontier III - Boxplot of Estimators - n = 200 - µR = 0.75
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Figure 18
Frontier III - Boxplot of Estimators - n = 400 - µR = 0.75
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Figure 19
Frontier III - Boxplot of Estimators - n = 600 - µR = 0.75
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Appendix 2: Proofs

Proof of Lemma 1. Given the algebraic structure of the optimand in equation (3)
we can write

An ≡ γ∗1 (x)−σ2(x)− 1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
(ei−ε̂i−σ2(x)−σ2(1)(x)(Xi−x)).

Letting S(x) =

(
gX(x) 0

0 gX(x)σ2
K

)
we have by the Cauchy-Schwarz inequality

that

|An| ≤
1

hn

(
(1, 0)(S−1

n (x)− S−1(x))2(1, 0)′
)1/2

Rn,1(x).

From part (b) of Lemma 1 in Martins-Filho and Yao (2007),

Bn(x) ≡ h−1
n

(
(1, 0)(S−1

n (x)− S−1(x))2(1, 0)′
)1/2

= Op(1)

uniformly in G, therefore completing the proof.
Proof of Theorem 1. a) Given the comments following Lemma 1, it suffices to
investigate the order of |c1(x)|. After substituting ei, we write c1(x) = I1n(x) +
I2n(x) + I3n(x) + I4n(x)− I5n(x), where

I1n(x) =
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
σ2(Xi)− σ2(x)− σ2(1)(x)(Xi − x)

)

I2n(x) =
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
(ε2i − 1)σ2(Xi)

I3n(x) =
2

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
σ(Xi)εi(m̂(Xi;hn)−m(Xi))

I4n(x) =
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
(m̂(Xi;hn)−m(Xi))

2

I5n(x) =
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
ε̂i

The uniform order in probability of Ijn(x) for j = 2, 3, 4 on the set G is given in
Martins-Filho and Yao (2007) Theorem 1, part (a). Here we study the order of

Brazilian Review of Econometrics 33(2) November 2013 195



Carlos Martins-Filho, Hudson S. Torrent and Flavio A. Ziegelmann

I1n(x)− I5n(x). Note that

I1n(x)− I5n(x) =
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
σ2(Xi)

− σ2(x)− σ2(1)(x)(Xi − x)

− 1

2
L(2)(λi(Xi − x), θ̂(x))(Xi − x)2

)
=

1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
1

2
σ2(2)(λ

′

i(Xi − x) + x)(Xi − x)2

− 1

2
L(2)(λi(Xi − x), θ̂(x))(Xi − x)2

)
=

1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
Ri(Xi − x)2

=
hn

ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

Ri.

where Ri = 1
2

(
σ2(2)(λ

′

i(Xi−x)+x)−L(2)(λi(Xi−x), θ̂(x))

)
and λ′i ∈ [0, 1]. Now,

rewriting Ri = 1
2

(
σ2(2)(λ

′

i(Xi−x)+x)−L(2)(0, θ0)

)
+ 1

2

(
L(2)(0, θ0)−L(2)(λi(Xi−

x), θ̂(x))

)
we have

I1n(x)− I5n(x) =
hn

2ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

×
(
σ2(2)(λ

′

i(Xi − x) + x)− L(2)(0, θ0)

)
+

hn
2ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

×
(
L(2)(0, θ0)− L(2)(λi(Xi − x), θ̂(x))

)
= J1n(x) + J2n(x).

Since L(2)(0, θ) = exp(θ1(x))(θ2(x))2 = σ2(x)(f (1)(x))2, we have that L(2)(0, θ)
< C provided |f (1)(x)| < Bf and 0 < σ2(x) < B̄2

σ. Also, since |σ2(2)(x)| < B̄2σ

for all x by the same argument in (Martins-Filho and Yao, 2007, p. 307), we have
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that supx∈G |J1n(x)| ≤ Op(h2
n). Now,

J2n(x) = − hn
2ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2(
(θ̂2(x)2 exp(θ̂1(x))

− θ2(x)2 exp(θ1(x))) exp(θ̂2(x)(Xi − x)λi)

+ θ2
2(x) exp(θ1(x))(exp(θ̂2(x)(Xi − x)λi)− 1)

)
= (θ̂2(x)2 exp(θ̂1(x))− θ2(x)2 exp(θ1(x))

−hn
2ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

exp(θ̂2(x)(Xi − x)λi)

− θ2
2(x) exp(θ1(x))

hn
2ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

× (exp(θ̂2(x)(Xi − x)λi)− 1).

Note that whenever
∣∣∣Xi−xhn

∣∣∣ > 1 we have K
(
Xi−x
hn

)
= 0. Hence, consider

Mn(x) =
−hn
ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

exp(θ̂2(x)(Xi − x)λi).

All terms in the sum are positive, and since the exponential function is everywhere
increasing exp(θ̂2(x)(Xi−x)λi) ≤ exp(|θ̂2(x)|hn) since λi ∈ [0, 1] and |Xi−x| ≤ hn,
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otherwise K
(
Xi−x
hn

)
= 0. Therefore,

|Mn(x)| ≤ hne
|θ̂2(x)|hn

ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

≤ B−1
gX
e|θ̂2(x)|hn h2

n

nhn

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

= B−1
gX
e|θ̂2(x)|hnh2

n

{
1

nhn

n∑
i=1

[
K

(
Xi − x
hn

)(
Xi − x
hn

)2

− 1

hn
E

(
K

(
Xi − x
hn

)(
Xi − x
hn

)2)]
+

1

hn
E

(
K

(
Xi − x
hn

)(
Xi − x
hn

)2)}
and consequently

sup
x∈G
|Mn(x)| ≤ B−1

gX
sup
x∈G

e|θ̂2(x)|hnh2
n

{
sup
x∈G

∣∣∣∣ 1

nhn

n∑
i=1

[
K

(
Xi − x
hn

)(
Xi − x
hn

)2

− 1

hn
E

(
K

(
Xi − x
hn

)(
Xi − x
hn

)2)]∣∣∣∣
+ sup
x∈G

1

hn
E

(
K

(
Xi − x
hn

)(
Xi − x
hn

)2)}
.

From (Martins-Filho and Yao, 2007, p. 306),

sup
x∈G

∣∣∣∣ 1

nhn

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

− 1

hn
E

(
K

(
Xi − x
hn

)(
Xi − x
hn

)2)∣∣∣∣= op(hn),

and supx∈G
1
hn
E

(
K
(
Xi−x
hn

)(
Xi−x
hn

)2
)

= O(1). Furthermore, given that θ̂2(x) is

an uniformly consistent estimator for θ2(x), we have e|θ̂2(x)| = e|θ̂2(x)−θ2(x)+θ2(x)|hn

≤ e|θ̂2(x)−θ2(x)|hn+|θ2(x)|hn p−→ 1 uniformly in G. Hence, sup
x∈G
|Mn(x)| ≤ B−1

gX
h2
n(hnop

(1) + O(1)) = B−1
gX
h3
nop(1) + B−1

gX
O(h2

n) = Op(h
2
n). Since (θ̂(x) − θ(x)) = op(1)

uniformly in G, we have by Slutsky Theorem that θ̂2(x)2eθ̂1(x) − θ2
2(x)eθ1(x) =

op(1). Similarly,

−θ2
2(x)eθ1(x) hn

2ngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

(eθ̂2(x)(Xi−x)λi − 1) = op(h
2
n).
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Hence, supx∈G |J2n(x)| = op(h
2
n). In all, supx∈G |I1n(x) − I5n(x)| = Op(h

2
n), and

using the results in Martins-Filho and Yao (2007) for I2n(x), I3n(x) and I4n(x)
we have

supx∈G

∣∣∣∣γ∗1(x)− σ2(x)− 1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
(
ei − ε̂i − σ2(x)− σ2(1)(x)(Xi − x)

) ∣∣∣∣≤ Op(h3
n) +Op

((
hn ln(n)

n

)1/2)
,

which completes the proof of part a).
b) A direct consequence of a) is the fact that

√
nhn(γ∗1 (x)− σ2(x))− 1√

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
×
(
ei − ε̂i − σ2(x)− σ2(1)(x)(Xi − x)

)
=
√
nh7

nOp(1) + (h2
n ln(n))1/2Op(1).

Hence, provided h2
n ln(n)→ 0 as n→∞, the asymptotic distribution of

√
nhn

(γ∗1 (x)− σ2(x)) is the same as that of

1√
nhngX(x)

n∑
i=1

K

(
Xi − x
hn

) (
ei − ε̂i − σ2(x)− σ2(1)(x)(Xi − x)

)
=

√
nhnc1(x),

which can be written as√
nhnc1(x) =

√
nhn(I1n(x)− I5n(x) + I2n(x) + I3n(x) + I4n(x)).

From Martins-Filho and Yao (2007) we have that√
nhnI2n(x)

d−→ N

(
0,
σ4(x)

gX(x)
(µ4(x)− 1)

∫
K2(y)dy

)
Also,

√
nhnI3n(x) =

√
nhn(

1√
n
op(1)+h2

nop(1)

)
=
√
hnop(1)+

√
nh5

nop(1). Hence, provided that nh5
n = O(1),

√
nhnI3n(x) = op(1). Moreover,

√
nhnI4n(x) =

√
nhn(h2

nop(1)) =
√
nh5

nop(1) =
op(1). We now focus on

√
nhn(I1n(x)− I5n(x)) =

√
nhn

1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

Ri

=
√
nhnBn(x).
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Note that we can write,

√
nhnBn(x) =

√
nhn

(
hn
n

1

2gX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

(σ2(2)(λ
′

i(Xi − x) + x)− L(2)(0, θ0))

)
+

√
nhn

(
hn
n

1

2gX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

(L(2)(0, θ0))

− L(2)(λi(Xi − x), θ̂(x))

)
.

But using the definition of J2n(x) given in part a) as well as its order in probability
we have that the last term is

√
nhnJ2n(x) =

√
nhn(h2

nop(1)) =
√
nh5

nop(1) = op(1)
provided nh5

n = O(1). Now,

E

(
1

h2
n

hn
n

1

2gX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

[σ2(2)(λ
′

i(Xi − x) + x)

− L(2)(0, θ0)]

)
=

1

h2
n

(
hn
n

1

2gX(x)
n

∫
K(φ)φ2[σ2(2)(λ

′

i(Xi − x) + x)− L(2)(0, θ0)]

gX(x+ hnφ)hndφ

)
=

1

2gX(x)

(∫
K(φ)φ2h(2)(x+ λ

′

ihnφ)g(x+ hnφ)hndφ

− L(2)(0, θ0)

∫
K(φ)φ2gX(x+ hnφ)dφ

)
→ 1

2
h(2)(x)σ2

K −
1

2
L(2)(0, θ0)σ2

K .
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as n→∞ by Lebesgue’s dominated convergence Theorem. Also,

V

(
1

h2
n

hn
n

1

2gX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

× [σ2(2)(λ
′

i(Xi − x) + x)− L(2)(0, θ0)]

)
=

1

4g2
X(x)

1

n2h2
n

nV K

(
Xi − x
hn

)(
Xi − x
hn

)2

[σ2(2)(λ
′

i(Xi − x) + x)

− L(2)(0, θ0)]

=
1

4g2
X(x)

1

nh2
n

{
E

(
K2

(
Xi − x
hn

)(
Xi − x
hn

)4

[σ2(2)(λ
′

i(Xi − x) + x)

− L(2)(0, θ0)]2
)

−
(
E

(
K

(
Xi − x
hn

)(
Xi − x
hn

)2

[σ2(2)(λ
′

i(Xi − x) + x)

− L(2)(0, θ0)]

))2}
=

1

h2
n

(
hn
n

1

2gX(x)
n

∫
K(φ)φ2[σ2(2)(λ

′

i(Xi − x) + x)− L(2)(0, θ0)]

gX(x+ hnφ)hndφ

)
=

1

4g2
X(x)

{
1

nh2
n

∫
K2(φ)φ4[h(2)(x+ λ

′

ihnφ)

− L(2)(0, θ0)]2g(x+ hnφ)hndφ

− 1

n

(
1

hn

∫
K(φ)φ[h(2)(x+ λ

′

ihnφ)

− L(2)(0, θ0)]gX(x+ hnφ)hndφ

)2}
.

Observe that

−1

4g2
X(x)

1

n

(∫
K(φ)φ[h(2)(x+ λ

′

ihnφ)− L(2)(0, θ0)]gX(x+ hnφ)dφ

)2

→ 0

as n→∞ and

1

4g2
X(x)

1

nh2
n

∫
K2(φ)φ4[h(2)(x+ λ

′

ihnφ)− L(2)(0, θ0)]2g(x+ hnφ)dφ→ 0
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provided that nhn →∞ and given that
∫
K2(φ)φ4dφ < C. In all,

hn
n

1

2gX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

[σ2(2)(λ
′

i(Xi − x) + x)− L(2)(0, θ0)]

=
1

2
h2
n(h(2)(x)− L(2)(0, θ0))σ2

K + op(h
2
n),

and

hn
n

1

2gX(x)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

[L(2)(0, θ0)− L(2)(λi(Xi − x), θ̂(x))]

= op(h
2
n).

Hence, we conclude that

√
nhn

(
γ∗1(x)− σ2(x)− 1

2
h2
nσ

2
K(σ2(2)(x)− L(2)(0, θ0)) + op(h

2
n)

)
d−→

N

(
0,
σ4(x)

gX(x)
(µ4(x)− 1)

∫
K2(y)dy

)
,

which completes the proof.

Proof of Theorem 2. Since θ̂(x) ≡
(
θ̂1(x)

θ̂2(x)

)
is in the interior of some compact

subset Θ̄ of <2 and satisfies

Dn(x, θ̂(x)) = 1
nhn

∑n
i=1(ei − L(Xi − x, θ̂(x)))L(Xi − x, θ̂(x))K

(
Xi−x
hn

)
1
nhn

∑n
i=1(ei − L(Xi − x, θ̂(x)))L(Xi − x, θ̂(x))(Xi − x)K

(
Xi−x
hn

)  = 0

it suffices to show that there exists D(x, θ) such that D(x, θ0(x)) = 0 and sup
θ∈Θ̄,x∈G

||Dn(x, θ(x))−D(x,Θ)|| = op(1) (van der Vaart (1998)). We focus on Dn,1(x, θ),
the first element of Dn(x, θ) and set D1(x, θ) = gX(x)L(0, θ)(σ2(x) − L(0, θ)).
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Given that ei = (Yi − m̂(Xi;hn))2 we can write

1

nhn

n∑
i=1

(σ2(Xi)ε
2
i − σ2(Xi) + σ2(Xi)− L(Xi − x, θ̂(x)))

L(Xi − x, θ̂(x))K

(
Xi − x
hn

)
+

1

nhn

n∑
i=1

(m(Xi)− m̂(Xi;hn))2L(Xi − x, θ̂(x))K

(
Xi − x
hn

)

− 2

nhn

n∑
i=1

(σ2(Xi))
1/2εiL(Xi − x, θ̂(x))K

(
Xi − x
hn

)
(m̂(Xi;hn)

−m(Xi)) = 0.

or Dn,1(x, θ̂) ≡ I∗1n(x) + I∗2n(x)− I∗3n(x) + I∗4n(x) = 0 where

I∗1n(x) =
1

nhn

n∑
i=1

(σ2(Xi)− L(Xi − x, θ̂(x)))L(Xi − x, θ̂(x))K

(
Xi − x
hn

)

I∗2n(x) =
1

nhn

n∑
i=1

σ2(Xi)(ε
2
i − 1)L(Xi − x, θ̂(x))K

(
Xi − x
hn

)

I∗3n(x) =
2

nhn

n∑
i=1

(σ2(Xi))
1/2εiL(Xi − x, θ̂(x))K

(
Xi − x
hn

)
(m̂(Xi)−m(Xi))

I∗4n(x) =
1

nhn

n∑
i=1

(m(Xi)− m̂(Xi;hn))2L(Xi − x, θ̂(x))K

(
Xi − x
hn

)
..

We will show that supx∈G supθ∈Θ̄

∣∣Dn,1(x, θ)− gX(x)(σ2(x)− L(0, θ))L(0, θ)
∣∣

= op(1), and since gX(x)(σ2(x) − L(0, θ0))L(0, θ0) = 0 it follows that θ̂(x) is a
uniformly consistent estimator for θ0. We start by considering I∗2n(x).

I∗2n(x) =
1

nhn

n∑
i=1

σ2(Xi)(ε
2
i − 1)[L(0, θ) + L(1)(0, θ)(Xi − x)

exp(θ2λi(Xi − x))]K

(
Xi − x
hn

)
= L(0, θ)

1

nhn

n∑
i=1

σ2(Xi)(ε
2
i − 1)K

(
Xi − x
hn

)
+ L(1)(0, θ)

hn
nhn

n∑
i=1

σ2(Xi)

×
(
Xi − x
hn

)
exp(θ2λi(Xi − x))K

(
Xi − x
hn

)
= I∗21,n(x) + I∗22,n(x)
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Now,

sup
x∈G
|I∗21,n(x)| ≤ |L(0, θ)|B̄gX sup

x∈G

∣∣∣∣ hnnhn
n∑
i=1

σ2(Xi)(ε
2
i − 1)K

(
Xi − x
hn

) ∣∣∣∣
= |L(0, θ)|B̄gXOp

((
ln(n)

nhn

)1/2)
,

and supθ∈Θ supx∈G |I∗21,n(x)| ≤ supθ∈Θ |L(0, θ)|B̄gXOp
((

ln(n)
nhn

)1/2)
. For I∗22,n(x)

we have

|I∗22,n(x)| ≤ hn|L(1)(0, θ)|B̄gX
1

nhngX(x)

n∑
i=1

σ2(Xi)|ε2i − 1|
∣∣∣∣Xi − x

hn

∣∣∣∣
× exp(θ2λi(Xi − x))K

(
Xi − x
hn

)
≤ hn|L(1)(0, θ)|B̄gX

1

nhngX(x)

n∑
i=1

σ2(Xi)|ε2i − 1|
∣∣∣∣Xi − x

hn

∣∣∣∣
× exp(|θ2|hn)K

(
Xi − x
hn

)
and therefore

sup
x∈G
|I∗22,n(x)| ≤ hn|L(1)(0, θ)|B̄gXe|θ2|hn sup

x∈G

1

nhngX(x)

n∑
i=1

σ2(Xi)|ε2i − 1|

×
∣∣∣∣Xi − x

hn

∣∣∣∣exp(|θ2|hn)K

(
Xi − x
hn

)
.

Now, note that σ2(Xi)|ε2i − 1| = |(Ri − µR)2 − σ2
R|σ
−2
R σ2(Xi) ≤ C given that

Ri ∈ [0, 1], and

E

(
1

hn
K

(
Xi − x
hn

)
h(Xi)|ε2i − 1|

)
=

1

hn

∫
K

(
Xi − x
hn

)
σ2(Xi)

× |(Ri − µR)2 − σ2
R|

σ2
R

gX(Xi)gR(Ri|Xi)dXidRi

=
1

σ2
Rhn

∫
K

(
Xi − x
hn

)
σ2(Xi)

×
∫
|(Ri − µR)2

− σ2
R|gR(Ri|Xi)dRigX(Xi)dXi.
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Now, since
∫
|(Ri−µR)2−σ2

R|gR(Ri|Xi)dRi ≤
∫
|(Ri−µR)2|gR(Ri|Xi)dRi+σ

2
R ≤

2σ2
R, we will denote this integral by η(Xi). So,

E

(
1

hn
K

(
Xi − x
hn

)
σ2(Xi)|ε2i − 1|

)
=

1

hnσ2
R

∫
K(φ)σ2(x+ hnφ)η(x+ hnφ)

× gX(x+ hnφ)hndφ

with

sup
x∈G

E

(
1

hn
K

(
Xi − x
hn

)
σ2(Xi)|ε2i − 1|

)
=

1

σ2
R

∫
K(φ)dφ sup

x∈G
σ2(x) sup

x∈G
η(x)

× sup
x∈G

gX(x) ≤ C.

where C is an arbitrary constant. By Lemma 1 - part (a) in Martins-Filho and
Yao (2007)

sup
x∈G

1

nhngX(x)

n∑
i=1

σ2(Xi)|ε2i − 1|K
(
Xi − x
hn

)
= Op

((
ln(n)

nhn

)1/2)
+O(1),

and consequently

sup
x∈G
|I∗22,n(x)| ≤ hn|L(1)(0, θ)|B̄gX exp(|θ2|hn)

[
Op

((
ln(n)

nhn

)1/2)
+O(1)

]
sup
θ∈Θ

sup
x∈G
|I∗22,n(x)| ≤ sup

θ∈Θ
hn|L(1)(0, θ)|B̄gX exp(|θ2|hn)

[
Op

((
ln(n)

nhn

)1/2)
+O(1)

]
.
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We now turn our attention to I∗3n(x), which can be written as

I∗3n(x) =
2

nhn

n∑
i=1

(σ2(Xi))
1/2εiK

(
Xi − x
hn

)
(m(Xi)− m̂(Xi;hn))

×
[
L(0, θ) + L(1)(λi(Xi − x), θ)

]
=

2

nhn

n∑
i=1

(σ2(Xi))
1/2εiK

(
Xi − x
hn

)
(m(Xi)− m̂(Xi;hn))

[
L(0, θ)

+ L(1)(0, θ)(Xi − x) exp(θ2λi(Xi − x))

]
= L(0, θ)

2

nhn

n∑
i=1

(m(Xi)− m̂(Xi;hn))(σ2(Xi))
1/2εiK

(
Xi − x
hn

)

+ L(1)(0, θ)
2

nhn

n∑
i=1

(m(Xi)− m̂(Xi;hn))(σ2(Xi))
1/2εiK

(
Xi − x
hn

)
× (Xi − x) exp(θ2λi)(Xi − x))

= I∗31,n(x) + I∗32,n(x).

We write I∗31,n(x) = L(0, θ)gX(x) 2
nhngX(x)

∑n
i=1(m(Xi)− m̂(Xi;hn))

(σ2(Xi))
1/2εiK

(
Xi−x
hn

)
. From Martins-Filho and Yao (2007) we have that

sup
x∈G

∣∣∣∣L(0, θ)
2

nhn

n∑
i=1

(m(Xi)

− m̂(Xi;hn))(σ2(Xi))
1/2εiK

(
Xi − x
hn

) ∣∣∣∣
= Op(h

2
n)

+ Op

((
ln(n)

nhn

)1/2)
.

Hence, supx∈G|I∗31,n(x)| ≤ L(0, θ)B̄gX

[
Op(h

2
n) +Op

((
ln(n)
nhn

)1/2)]
, and

supθ∈Θ̄ supx∈G |I∗31,n(x)| ≤ CB̄gX
[
Op(h

2
n) +Op

((
ln(n)
nhn

)1/2)]
, since supθ∈Θ̄
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L(0, θ) = C, given that Θ̄ is compact. I∗32,n(x) can be written as,

I∗32,n(x) = 2L(1)(0, θ)gX(x)
hn

nhngX(x)

n∑
i=1

(m(Xi)

− m̂(Xi;hn))(σ2(Xi))
1/2εiK

(
Xi − x
hn

)
×

(
Xi − x
hn

)
exp(θ2λi(Xi − x))

= 2L(1)(0, θ)gX(x)hnI
∗
321,n(x)

|I∗32,n(x)| = 2|L(1)(0, θ)|gX(x)hn|I∗321,n(x)|.

|I∗321,n(x)| ≤ 1

nhngX(x)

n∑
i=1

|m(Xi)

− m̂(Xi, hn)|(σ2(Xi))
1/2|εi|K

(
Xi − x
hn

)
×

∣∣∣∣Xi − x
hn

∣∣∣∣exp(θ2λi(Xi − x)).

Since, we have that if

∣∣∣∣Xi−xhn

∣∣∣∣> 1 then K
(
Xi−x
hn

)
= 0 we can write that

|I∗321,n(x)| ≤ 1

nhngX(x)

n∑
i=1

|m(Xi)− m̂(Xi;hn)|(σ2(Xi))
1/2|εi|K

(
Xi − x
hn

)
×

∣∣∣∣Xi − x
hn

∣∣∣∣e|θ2|hn
since eθ2λi(Xi−x) ≤ e|θ2|hn given that 0 ≤ λi ≤ 1. Now, note that from Fan and
Yao (1998) and arguments similar to those used to establish Lemma 1, we have
that for a bandwidth h1 used in the first stage estimation, we have

m̂(Xi;h1)−m(Xi) =
1

nh1gX(Xi)

n∑
t=1

K

(
Xt −Xi

h1

)[
Yt −m(Xi)

−m(1)(Xi)(Xt −Xi)

]
+Op(Rn,2(Xi))

where Rn,2(Xi) = 1
n

∣∣∣∑n
t=1K

(
Xt−Xi
h1

)
Y ∗t

∣∣∣ + 1
n

∣∣∣∑n
t=1K

(
Xt−Xi
h1

)(
Xt−Xi
h1

)
Y ∗t

∣∣∣
and Y ∗t = Yt −m(x)−m(1)(x)(Xt − x) = 1

2m
(2)(Xti)(Xt −Xi)

2 + (σ2(Xt))
1/2εt,
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for Xti = φXt + (1− φ)Xi for some φ ∈ [0, 1]. Thus, we can write

m̂(Xi;h1)−m(Xi) =
h2

1

nh1gX(Xi)

n∑
t=1

K

(
Xt −Xi

h1

)(
Xt −Xi

h1

)2
1

2
m(2)(Xti)

+
1

nh1gX(Xi)

n∑
t=1

K

(
Xt −Xi

h1

)
(h(Xt))

1/2εt

+ Op(Rn,2(Xi))

and

|m̂(Xi, h1)−m(Xi)| ≤
h2

1

nh1gX(Xi)

n∑
t=1

K

(
Xt −Xi

h1

)(
Xt −Xi

h1

)2

×1

2
|m(2)(Xti)|

+
1

nh1gX(Xi)

n∑
t=1

K

(
Xt −Xi

h1

)
(h(Xt))

1/2|εt|

+ Op(Rn,2(Xi)).
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Consequently, we have

|I∗321,n(x)| ≤ e|θ2|hn
1

nhngX(x)

n∑
i=1

[
h2

1

nh1gX(Xi)

n∑
t=1

K

(
Xt −Xi

h1

)(
Xt −Xi

h1

)2

× 1

2
|m(2)(Xti)|

+
1

nh1gX(Xi)

n∑
t=1

K

(
Xt −Xi

h1

)
(h(Xt))

1/2|εt|+Op(Rn,2(Xi))

]
× (h(Xt))

1/2|εt|K
(
Xi − x
hn

)
= e|θ|hn

1

nhngX(x)

h2
1

nh1

n∑
i=1

n∑
t=1

1

gX(Xi)

× K

(
Xt −Xi

h1

)(
Xt −Xi

h1

)2

K

(
Xi − x
hn

)
× (σ2(Xt))

1/2|εt|
1

2
|m(2)(Xti)|

+ e|θ|hn
1

nhngX(x)

1

nh1

n∑
i=1

n∑
t=1

1

gX(Xi)
K

(
Xt −Xi

h1

)
(σ2(Xt))

1/2|εt|

× (h(Xi))
1/2|εi|K

(
Xi − x
hn

)
+ e|θ|hn

1

nhngX(x)

n∑
i=1

(σ2(Xi))
1/2|εi|K

(
Xi − x
hn

)
Op(Rn,2(Xi))

= Ln,1(x) + Ln,2(x) + Ln,3(x).
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We investigate each of these terms separately. First, we write

Ln,1(x) ≤ e|θ2|hnB−1
gX

1

nhn

h2
1

nh1

n∑
i=1

K

(
Xi − x
hn

)
× σ2(Xi)

1/2

gX(Xi)
|εi|

× 1

nh1
K

(
Xt −Xi

h1

)(
Xt −Xi

h1

)2

≤ e|θ2|hnB−1
gX

h2
1

nhn

n∑
i=1

K

(
Xi − x
hn

)
σ2(Xi)

1/2

gX(Xi)
|εi|

× 1

h1
sup
x∈G

1

n

n∑
t=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

.

By (Martins-Filho and Yao, 2007, p. 307) we have that

1

n

n∑
i=1

K

(
Xi − x
hn

)
σ2(Xi)

1/2

gX(Xi)
|εi| = Op(hn)

and

sup
x∈G

1

n

n∑
t=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

= Op(h1).

Hence, supθ∈Θ̄ supx∈G Ln,1(x) ≤ supθ∈Θ̄ e
|θ2|hnB−1

gX
h2

1Op(1). Second, we write

Ln,2(x) = e|θ|hn
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)
σ2(Xi)

1/2

gX(Xi)
|εi|

×
n∑
t=1

1

nh1
K

(
Xt −Xi

h1

)
σ2(Xt)

1/2|εt|

≤ e|θ2|hnB−1
gX

1

nhn

n∑
i=1

K

(
Xi − x
hn

)
σ2(Xi)

1/2

gX(Xi)
|εi|

× sup
x∈G

1

nh1

n∑
t=1

K

(
Xt − x
h1

)
σ2(Xt)

1/2|εt|.
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Now, observe that

E

(
1

h1
K

(
Xt − x
h1

)
(σ2(Xt))

1/2|εt|
)

=
1

h1

∫
K

(
Xt − x
h1

)
(σ2(Xt))

1/2 1

σR

× |Rt − µR|gX(Xt)× gR|X(Rt;Xt)dXtdRt

=
1

σR

1

h1

∫
K

(
Xt − x
h1

)
(σ2(Xt))

1/2

×
∫
|Rt − µR| × gR|X(Rt;Xt)dRtgX(Xt)dXt

=
1

σR

1

h1

∫
K

(
Xt − x
h1

)
(σ2(Xt))

1/2

× µ1(Xt)gX(Xt)dXt

=
1

σR

1

h1

∫
K(φ)(σ2(x+ h1φ))1/2

× µ1(x+ h1φ)h1gX(x+ h1φ)dφ.

Hence,

sup
x∈G

E

(
1

h1
K

(
Xt − x
h1

)
(σ2(Xt))

1/2|εt|
)
≤ 1

σR

∫
K(φ)dφ sup

x∈G
σ2(x))1/2 sup

x∈G
gX(x)

× sup
x∈G

µ1(x) ≤ C,

since (σ2(Xt))
1/2|εt| = σ2(Xt)

1/2 1
σR
|Rt − µR| < C, by Lemma 1 in Martins-Filho

and Yao (2007), part (a), if nh3
n →∞. Therefore, we can write

sup
x∈G

1

nh1

n∑
t=1

K

(
Xt − x
h1

)

×(σ2(Xt))
1/2|εt| ≤ sup

x∈G

∣∣∣∣ 1

nh1

n∑
t=1

K

(
Xt − x
h1

)
(σ2(Xt))

1/2|εt|

− E
(

1

h1
K

(
Xt − x
h1

)
(σ2(Xt))

1/2|εt|
)∣∣∣∣

+ sup
x∈G

1

h1
E

(
K

(
Xt − x
h1

)
(σ2(Xt))

1/2|εt|
)

= Op

((
ln(n)

nh1

)1/2)
+O(1).

Hence, supθ∈Θ̄ supx∈G Ln,2(x) ≤ supθ∈Θ e
|θ2|hnB−1

gX
Op(1). Lastly, by (Martins-

Filho and Yao, 2007, p. 308) supθ∈Θ supx∈G Ln,3(x) ≤ supθ∈Θ̄ e
|θ2|hnB−1

gX
h2
nop(1).
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Combining the results on Ln,1(x), Ln,2(x) and Ln,3(x) we have, together with
compactness of Θ̄, that supθ∈Θ̄ supx∈G |I∗32,n(x)| = op(1). Now, consider

I∗4n(x) =
1

nhn

n∑
i=1

(m(Xi)− m̂(Xi;h1))2

[
L(0, θ)

+ L(1)(0, θ)(Xi − x)eθ2λi(Xi−x)

]
K

(
Xi − x
hn

)
= L(0, θ)

1

nhn

n∑
i=1

(m(Xi)− m̂(Xi;h1))2K

(
Xi − x
hn

)

+ L(1)(0, θ)
1

nhn

n∑
i=1

(m(Xi)

− m̂(Xi;h1))2(Xi − x)eθ2λi(Xi−x)K

(
Xi − x
hn

)
= I∗41,n(x) + I∗42,n(x).

We consider each of these terms separately.

I∗41,n(x) = L(0, θ)gX(x)
1

nhngX(x)

n∑
i=1

(m(Xi)

− m̂(Xi;hn))2K

(
Xi − x
hn

)
which gives

sup
x∈G
|I∗41,n(x)| ≤ |L(0, θ)|B̄gX sup

x∈G

∣∣∣∣ 1

nhngX(x)

n∑
i=1

(m(Xi)

− m̂(Xi;hn))2K

(
Xi − x
hn

) ∣∣∣∣
By (Martins-Filho and Yao, 2007, p. 310)

sup
x∈G

∣∣∣∣ 1

nhngX(x)

n∑
i=1

(m(Xi)− m̂(Xi;hn))2K

(
Xi − x
hn

) ∣∣∣∣= op(h
2
n) and consequently
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supθ∈Θ̄ supx∈G |I∗41,n(x)| ≤ supθ∈Θ̄ |L(0, θ)|B̄gXh2
nop(1). Now,

I∗42,n(x) = L(1)(0, θ)hn
1

nhn

n∑
i=1

(m(Xi)− m̂(Xi;h1))2K

(
Xi − x
hn

)(
Xi − x
hn

)
× eθ2λi(Xi−x) and

|I∗42,n(x)| ≤ |L(1)(0, θ)|hn
1

nhn

n∑
i=1

(m(Xi)

− m̂(Xi;h1))2K

(
Xi − x
hn

) ∣∣∣∣Xi − x
hn

∣∣∣∣eθ2λi(Xi−x)

Again, by compactness of the support of K, we have

|I∗42,n(x)| ≤ |L(1)(0, θ)|hn
1

nhn

n∑
i=1

(m(Xi)− m̂(Xi;h1))2K

(
Xi − x
hn

)
×
∣∣∣∣Xi − x

hn

∣∣∣∣e|θ2|hn and

sup
x∈G
|I∗42,n(x)| ≤ hnB̄gX |L(1)(0, θ)|e|θ2|hnop(h2

n).

Consequently, supθ∈Θ̄ supx∈G |I∗42,n(x)| ≤ h3
nB̄gX supθ∈Θ |L(1)(0, θ)|e|θ2|hn . We

now examine I∗1n(x). We start by noting that

σ2(Xi)− L(Xi − x, θ̂(x)) = σ2(Xi)− L(0, θ)− L(1)(0, θ)(Xi − x)eθ2λi(Xi−x)

= σ2(x) + σ2(1)(λ
′

i(Xi − x) + x)(Xi − x)− L(0, θ)

− L(1)(0, θ)(Xi − x)eθ2λi(Xi−x).

Therefore,

I∗1n(x) = gX(x)
1

nhngX(x)

n∑
i=1

[
σ2(x)− L(0, θ) + σ2(1)(λ

′

i(Xi − x) + x)(Xi − x)

− L(1)(0, θ)(Xi − x)eθ2λi(Xi−x)

]
K

(
Xi − x
hn

)
L(Xi − x, θ)

= gX(x)

{
1

nhngX(x)
(σ2(x)− L(0, θ))

n∑
i=1

K

(
Xi − x
hn

)
L(Xi − x, θ)

+
1

nhngX(x)

n∑
i=1

K

(
Xi − x
hn

)[
σ2(1)(λ

′

i(Xi − x) + x)(Xi − x)

− L(1)(0, θ)(Xi − x)eθ2λi(Xi−x)

]
L(Xi − x, θ)

}
= gX(x)(I∗11,n(x) + I∗12,n(x)).
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We now look at I∗11,n(x), and I∗12,n(x) in isolation.

I∗11,n(x) = [σ2(x)− L(0, θ)]
1

nhn

n∑
i=1

K

(
Xi − x
hn

)
L(Xi − x, θ)

= [σ2(x)− L(0, θ)]
1

nhn

n∑
i=1

K

(
Xi − x
hn

)(
L(0, θ)

− L(1)(0, θ)(Xi − x)eθ2λi(Xi−x)

)
= [σ2(x)− L(0, θ)]

{
L(0, θ)

1

nhn

n∑
i=1

K

(
Xi − x
hn

)
− hnL(1)(0, θ)

× 1

nhn

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)
eθ2λi(Xi−x)

}
.

From Lemma 1 in Martins-Filho and Yao (2007) we have that 1
nhn∑n

i=1K
(
Xi−x
hn

)
converges uniformly to gX(x) on a compact set G, hence the

first term converges uniformly to gX(x)L(0, θ) on G. By arguments made earlier

in the proof we have that 1
nhn

∑n
i=1K

(
Xi−x
hn

)(
Xi−x
hn

)
×eθ2λi(Xi−x) is uniformly

bounded in probability on G, hence the last term is op(1) uniformly in G. Hence,

we gave I∗11,n(x)
p−→ gX(x)[h(x)−L(0, θ)]L(0, θ). Now we treat I∗12,n(x). Note that,

I∗12,n(x) =
hn
nhn

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)(
σ2(1)(λ

′

i(Xi − x) + x)− L(1)(0, θ)

× eθ2λi(Xi−x)

)(
L(0, θ)− hnL(1)(0, θ)

(
Xi − x
hn

)
eθ2λi(Xi−x)

)
= hn

1

nhn
L(0, θ)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)(
σ2(1)(λ

′

i(Xi − x) + x)

− L(1)(0, θ)eθ2λi(Xi−x)

)
− h2

n

1

nhn
L(1)(0, θ)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

× eθ2λi(Xi−x)

(
σ2(1)(λ

′

i(Xi − x) + x)− L(1)(0, θ)eθ2λi(Xi−x)

)
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= hn
1

nhn
L(0, θ)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)(
σ2(1)(λ

′

i(Xi − x) + x)

− L(1)(λi(Xi − x), θ)

)
−h2

n

1

nhn
L(1)(0, θ)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)2

× eθ2λi(Xi−x)

(
σ2(1)(λ

′

i(Xi − x) + x)− L(1)(λi(Xi − x), θ)

)
= I∗121,n(x)− I∗122,n(x).

Observe that

I∗121,n(x) = hn
1

nhn
L(0, θ)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)
[σ2(1)(λ

′

i(Xi − x) + x)

− L(1)(0, θ)]

+ hn
1

nhn
L(0, θ)

n∑
i=1

K

(
Xi − x
hn

)(
Xi − x
hn

)
[L(1)(0, θ)

− L(1)(λi(Xi − x), θ)],

where L(1)(0, θ) = σ2(x) < C. Also, |σ2(1)(x)| ≤ σ2(x)|f (1)(x)| < C provided
|f (1)(x)| < Bf . Hence,

|I∗121,n(x)| ≤ hnB−1
gX
C

1

nhn

n∑
i=1

K

(
Xi − x
hn

) ∣∣∣∣Xi − x
hn

∣∣∣∣
+ hnB−1

gX
C

1

nhn

n∑
i=1

K

(
Xi − x
hn

) ∣∣∣∣Xi − x
hn

∣∣∣∣[L(1)(0, θ)

− L(1)(λi(Xi − x), θ)].

Since, K
(
Xi−x
hn

)
= 0 whenever

∣∣∣∣Xi−xhn

∣∣∣∣< 1,

|I∗121,n(x)| ≤ hnB−1
gX
C

1

nhn

n∑
i=1

K

(
Xi − x
hn

)

+ hnB−1
gX
C

1

nhn

n∑
i=1

K

(
Xi − x
hn

)
|L(1)(0, θ)− L(1)(λi(Xi − x), θ)|.

Now, |L(1)(0, θ)−L(1)(λi(Xi−x), θ)| = σ2(x)|1−eθ2λi(Xi−x)| ≤ σ2(x)(1+ehn|θ2|).

Hence, |I∗121,n(x)| ≤ hnB−1
gX
C 1
nhn

∑n
i=1K

(
Xi−x
hn

)
+hnσ

2(x)(1+ehn|θ2|) B−1
gX
C 1
nhn
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×
∑n
i=1K

(
Xi−x
hn

)
. Again, using Lemma 1 in Martins-Filho and Yao (2007),

sup
x∈G
|I∗121,n(x)| ≤ hnB−1

gX
BhC[gX(x) +Op(hn)]

+ hnh(x)(1 + ehn|θ2|)B−1
gX
Bh[gX(x) +Op(hn)],

which gives sup
θ∈Θ̄,x∈G

|I∗121,n(x)| = op(1). Similar arguments show that

sup
θ∈Θ̄,x∈G

|I∗122,n(x)| = op(1) completing the proof for Dn,1(x).

For the second element Dn,2(x, θ) of the vector Dn(x, θ) we put D2(x, θ) = 0
and note that by assumption A3 it can be verified, given the arguments used above,
that sup

θ∈Θ̄,x∈G
|Dn,2(x, θ)| = op(1).
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